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Abstract

The use of S-boxes (substitution boxes) to provide nonlinear properties is known to be a com-
mon way to design a block cipher. These nonlinear properties are necessary to ensure the se-
curity of a block cipher. This manuscript proposes a design construction of a new S-box us-
ing affine transformation via cellular automata as a permutation matrix. We incorporate this
cellular-automaton permutation matrix into the AES Sbox structure and test various irreducible
polynomials. Nonlinearity, bijection, bit independence criterion, strict avalanche effect, linear
approximation probability, and differential uniformity are the standard performance require-
ments used to evaluate the S-boxes that arise. Using this method, we are able to determine an
irreducible polynomial that enables the construction of a new S-box design that can achieve an
ideal strict avalanche criterion (SAC), which will subsequently provide efficiency in the design
of block ciphers.

Keywords: substitution-box; irreducible polynomial; cellular automata; strict avalanche crite-
rion.
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1 Introduction

The use of secure block ciphers is critical in many applications such as in medical systems,
online banking, and e-commerce, which need data protection in terms of its confidentiality. Cur-
rently, most of these applications are protected by the current block cipher standard, namely, the
Advanced Encryption Standard (AES)[14]. After the selection of AES in the year 2000, Canright
[10] stated that it was expected by the cryptography community that the life of AESwill last about
20 years after its announcement. Recent attacks on full-round AES which can be found in [9, 8]
seem to confirm this expectation. With more serious attacks to appear, this requires a new effort
to identify a new block cipher standard to supersede the AES. Furthermore, AES is designed in
many versions to enhance the performance, efficiency and the security margins [23].

Having a secure block cipher requires a good design strategy, particularly on the construction
of nonlinear components such as substitution boxes (also known as S-boxes). The main objective
of S-box construction is to hide the connection between the plaintext and ciphertext. This com-
ponent implies that the S-boxes are the fundamental part that gives a block cipher security. This
nonlinear property within the S-boxes requires it to producemathematically random-looking out-
puts. The effect of not having a “random” output can be seen as in the DES algorithm [12], where
it is susceptible to statistical analyses such as differential cryptanalysis [7] and linear cryptanalysis
[19], and their variants such as works in [28].

One of the properties contributing to the randomness of the S-boxes is knownas StrictAvalanche
Criterion (SAC). To the best of our knowledge, an S-box to achieve an ideal SAC of 0.5 is not triv-
ial. As a result, we can only find a very limited number of S-boxes to have this property to avoid
a biased output.

An n× n S-box can be represented as a nonlinear function S : Fn
2 7→ Fn

2 , where Fn
2 represents

the vector space of n-tuple elements in GF(2). This function forms the basis of the confusion
property for block ciphers. Having a large size of an S-boxmay slow down the encryption process,
particularly in a scenario where large data processing is needed. Typically, for a general-purpose
block cipher, the size of the S-box normally should not exceed 16× 16 to give good performance.
In addition, the size of S-boxes may give certain advantages and disadvantages as there will be a
trade-off involved between performance, security, and space required for the implementation.

According to the seminal paper by Shannon [25], confusion property is a complex relationship
that involves as many plaintexts, secret keys, and ciphertexts bits as possible to provide the secu-
rity strength for a block cipher. As a result, many S-boxes have been designed using a variety of
techniques and assessed based on standard evaluation criteria, such as bijective, strict avalanche
criterion (SAC), nonlinearity, bit independence criterion (BIC), linear and differential probabili-
ties, etc. The searching for a cryptographically secure S-box is themost challenging stage to ensure
the robustness of a cryptographic algorithm against cryptanalysis.

The basis of an S-box is the construction of its Boolean function. The following characteristics
are frequently considered for a cryptographic Boolean function: strong nonlinearity, adequate
robustness, and strict avalanche criterion (SAC). The trade-off between these characteristics is a
challenging problem that has gotten much attention in the cryptography field [36]. The SAC is
also determined based on the completeness property, which defines each output bit depending
on all the input bits [30]. The value of avalanche, which deviates from 0.5, results in bias outputs
and may cause the block cipher to be susceptible to certain cryptanalytic attacks. Mar and Latt
[18] proposed a simple and compact method to measure the value of SAC. This method can also
be used to determine the given S-box’s completeness further. The value of SAC also affects the
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efficiency of confusion property. When the SAC achieves the ideal value of 0.5, it shows better
confusion properties of the S-box. An encryption technique that does not satisfy this criterion
may result in bias output. More precisely, if changing a single bit of the input causes only a single
bit of output to change, then cracking the encrypted text becomes easier by using, for example, a
divide-and-conquer attack.

Therefore, S-boxes have been previously constructed using various approaches in the litera-
ture, such as algebraic techniques, power mapping technologies, heuristic methods, cellular au-
tomata, and analytical approaches. To the best of our knowledge, improving the security for an
S-box has become a challenge to achieve a better score in SAC for good S-Box property. Particu-
larly, a new S-box structure that can provide an ideal SAC is required to secure the S-box against
statistical attacks, such as differential and cryptanalysis.

In this paper, an efficient technique for constructing an S-box is proposed. Our work improves
previous work by [1] in two folds; first, we apply affine transformation using cellular automata
matrix to construct a robust S-box. Using this technique, we are able to find a new algebraic struc-
ture that can avoid fixed points while maintaining a high algebraic degree of the S-box.

Secondly, using the pre-determined algebraic structure, we apply all 30 irreducible polynomi-
als one-by-one to find the most optimal irreducible polynomial over GF(28). This way, we are able
to find an ideal SAC of 0.5 which can help design a more robust S-box.

In Section 2, we review some previous related works. Section 3 describes the design construc-
tion of our proposed S-box. Section 4 describes the application of the design construction for the
new S-box. Section 5 presents the result of property analysis for the proposed S-box design. In
Section 6, we present the result of NIST statistical randomness test of the proposed S-box. In Sec-
tion 7, we present the result and discussion on our new S-box. Finally, we conclude the paper and
provide the future direction of our work in Section 8.

2 Related Works

In this section, we review recent related works in the construction of S-box design. Khan and
Azam [16] developed an S-box using an approach similar to AES, which is based on affine map-
ping and the orbit of the power function. Consequently, the author has been able to produce 256
alternative S-boxes, which passes all the cryptographic tests such as SAC, nonlinearity, etc. The
result on the SAC of this method is 0.503, which deviates slightly from an ideal value of 0.5. Next,
Alamsyah et al. [5] presented the construction of the S-box by modifying the chosen irreducible
polynomial and affine mapping. To generate multiplicative inverse of the input, [5] selected three
irreducible polynomials from a list of 30 irreducible polynomials with amaximumdegree of 8 and
the highest nonlinearity value. Then, Alamsyah et al. [5] created 9 AES-like S-boxes using three
affine matrices obtained from [29] and [26]. Alamsyah et al. [5] claimed that the proposed S-box
could provide a higher security level than the other S-boxes. This work has slightly improved the
result on SAC even it also deviates from the ideal value of 0.5.

Then, [17] developed a hybrid strategy based on chaotic maps and algebraic transformations
for the S-boxes generation. Malik et al. [17] began by producing a key-based set of chaotic logistic
maps and used the maps to build an 8 × 8 rotating matrix. Next the rotational matrix performs
an affine transformation on the input components to generate the S-box. They demonstrated that
the suggested technique could create 128 different rotational matrices, which can then be utilized
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to generate 128 distinct S-boxes while maintaining the affine transformation. However, the work
of these S-boxes did not attain the ideal SAC value of 0.5.

In other work, [1] developed a robust S-box by combining a cellular automaton rule-based
matrix technique with an algebraic structure of fractional linear transformation over GF(28). The
results reveal that this work outperforms prior relatedworks. Even though the design of the S-box
fulfills the criteria of S-box properties, there is one fixed point that has been found in the S-box in
addition to not being able to achieve an ideal value of SAC.

Farwa et al. [15] developed the S-box construction method based on linear fractional transfor-
mation. A straightforward technique with a single-step function was used to structure the sug-
gested S-box. The strength analysis has revealed that the S-box meets the strong cryptographic re-
quirements and has a resistance against differential and linear cryptanalysis. Then, [6] improved
the work [15] by incorporating some permutations into the algebraic structure of the symmetric
group on the 8-bit input and then performing a bitwise XOR operation to construct a variation of
S-boxes. This work has yielded a good result in all cryptographic tests, including the SAC value
of 0.4999, close to the ideal value.

Finally, Zahid and Arshad [33] has proposed a novel cubic polynomial transformation-based
(CPT) approach for a new design S-box construction. The use of a cubic polynomial has been able
to simplify the design construction of the S-box. Several important criteria were used to analyze
and appraise the desired strength of the S-box. Then, in the same year, [34] improved the nonlin-
earity of the S-box by modifying the algebraic structure to apply cubic fractional transformation
(CFT). According to [35], they enhanced nonlinearity from 106.8 to 107 and the SAC value from
0.507 to 0.497. Despite the improvement in the nonlinearity, they are not able to achieve an ideal
value of SAC to make the S-box stronger.

Most recent studies have improved on various cryptographic features of the S-box, including
the SAC, but none of these efforts has obtained an ideal value of SAC of 0.5, to our knowledge.
Therefore, in this manuscript, we would like to take this opportunity to fill this gap by proposing
a new S-box design with an ideal SAC value of 0.5 and retaining all other good cryptographic
properties.

3 Design Construction of Proposed S-Box

In this section, we discuss the method of S-box construction based on the combination of three
elements, namely, cellular automata, irreducible polynomials, and affine transformations. Our
proposed S-box structure is based on affine transformation, which has the same structure as AES
[14] but uses irreducible polynomial valued 283 (in decimal) as the multiplicative inverse in finite
fields. Instead, we use the cellular automata-based rule of 90 that we inspire from the work [1], to
modify the permutation affine matrix. Then, we select the most suitable irreducible polynomial,
giving an ideal SAC value to the S-box.

3.1 Cellular automata

A cellular automaton (CA) is a parallel computation model studied in automata theory.

Definition 3.1. Let f : Fd
2 → F2 and n ≥ d. We define periodic boundary cellular automata with n
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input cells and local rule f , for all x ∈ Fn
2 as: F (x1, x2, · · ·, xn) = f(x1, x2, · · ·, xd), · · ·, f(xn−(d−2), · ·

·, x1), · · ·, f(xn, · · ·, xd−1).

CA is a discrete dynamical system that evolves and uses a local rule to form its state transition
table. A lattice or cell chain of size M characterises the CA, with a location indicating each cell
indexed s and a variable rs that can only accept i discrete values. As a result, these automata have
2M distinct states. Most of previous works chose the discrete value i to begin with i = 2, while
the value of rs was chosen to begin with rs = 0 or 1. rts represents the CA state at time t ≥ 0
and position indexed s. As can be seen, all times, spaces, and states of the system have discrete
values. The CA evolves according to the local rule of 90 which is defined in equation (1) and also
illustrated as in Figure 1 [1, 27],

rt+1
s = (rts−1 + rts+1) mod 2. (1)

The cell position indexed s at discrete time t + 1 is dependent on the adjacent cells both on
the left and right at time t (cf. Equation (1) and Figure 1). CA is considered uniform when the
same rule is used to update the cells; otherwise, it is termed non-uniform or hybrid. It is crucial to
note that two main variables affect the development rules of CA, such as the rules and the initial
conditions. For instance, Table 1 shows a partial time-space pattern generated by the evolution
rule using Equation (1).

Figure 1: State Diagram of Cellular Automata Rule 90.

To compute the matrix WL, we set an initial condition vector v = [0, 0, 0, 1, 0, 0, 0, 0]T gener-
ating from Table 1 to form the 1st row of matrix A. We ignore the first column from the left of
Table 1 as we need to consider the adjacent cells both on the left and right. We repeat this process
considering the next row of Table 1 until the last row.

Table 1: A rule 90 arrangement with a single centre value of 1.

space time s − 1 s s + 1

t · · · 0 0 0 0 1 0 0 0 0 0 · · ·
t+ 1 · · · 0 0 0 1 0 1 0 0 0 0 · · ·
t+ 2 · · · 0 0 1 0 0 0 1 0 0 0 · · ·
t+ 3 · · · 0 1 0 1 0 1 0 1 0 0 · · ·

A =


0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 1 0

 (2)
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The resulting matrix A is then used to construct matrixWL by applying matrix transposition
as shown in Equation (3) below:

WL =



1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0


(3)

To generateWR, we useWL as a multiplier matrix, such that,WR = P ×WL, where P is a fixed
permutation matrix. This matrix can be shown as in Equation (4) below,

WR =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0





1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0


=



0 1 0 0
1 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0
1 0 0 0


(4)

Subsequently, using the samemethod by [1], we construct a square generatingmatrixW based
on the CA rule of 90, allowing us to develop our proposed strong S-box. This matrix has a dimen-
sion of 8×8 and is formed by combining both matrices,WL andWR. KR becomes the left and the
right parts ofW as shown in Equation (5). Then, we apply matrixW into an algebraic structure
of an affine transformation as the permutation matrix as described in Section 3.3.

W = (WL|WR) =



1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0
1 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0
1 0 0 0


(5)

3.2 Irreducible Polynomial

Definition 3.2. A polynomial f over field F is called irreducible iff f cannot be factorized into two
polynomials over F and both of degree lower than f .

Since the dimension of our proposed S-box is 8× 8, thus, we choose an irreducible polynomial
of degree 8 to generate its multiplicative inverse. The candidates of irreducible polynomials of
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degree 8 are listed in Table 2. We investigate each of these polynomials to find the one that can
provide optimum performance for our S-box.

Table 2: List of 30 irreducible polynomials in GF(28).

No Irreducible Polynomial Binary Dec
1 t8 + t4 + t3 + t+ 1 100011011 283
2 t8 + t4 + t3 + t2 + 1 100011101 285
3 t8 + t5 + t3 + t+ 1 100101011 299
4 t8 + t5 + t3 + t2 + 1 100101101 301
5 t8 + t5 + t4 + t3 + 1 100111001 313
6 t8 + t5 + t4 + t3 + t2 + t+ 1 100111111 319
7 t8 + t6 + t3 + t2 + 1 101001101 333
8 t8 + t6 + t4 + t3 + t2 + t+ 1 101011111 351
9 t8 + t6 + t5 + t+ 1 101100011 355
10 t8 + t6 + t5 + t2 + 1 101100101 357
11 t8 + t6 + t5 + t3 + 1 101101001 361
12 t8 + t6 + t5 + t4 + 1 101110001 369
13 t8 + t6 + t5 + t4 + t2 + t+ 1 101110111 375
14 t8 + t6 + t5 + t4 + t3 + t+ 1 101111011 379
15 t8 + t7 + t2 + t+ 1 110000111 391
16 t8 + t7 + t3 + t+ 1 110001011 395
17 t8 + t7 + t3 + t2 + 1 110001101 397
18 t8 + t7 + t4 + t3 + t2 + t+ 1 110011111 415
19 t8 + t7 + t5 + t+ 1 110100011 419
20 t8 + t7 + t5 + t3 + 1 110101001 425
21 t8 + t7 + t5 + t4 + 1 110110001 433
22 t8 + t7 + t5 + t4 + t3 + t2 + 1 110111101 445
23 t8 + t7 + t6 + t+ 1 111000011 451
24 t8 + t7 + t6 + t3 + t2 + t+ 1 111001111 463
25 t8 + t7 + t6 + t4 + t2 + t+ 1 111010111 471
26 t8 + t7 + t6 + t4 + t3 + t2 + 1 111011101 477
27 t8 + t7 + t6 + t5 + t2 + t+ 1 111100111 487
28 t8 + t7 + t6 + t5 + t4 + t+ 1 111110011 499
29 t8 + t7 + t6 + t5 + t4 + t2 + 1 111110101 501
30 t8 + t7 + t6 + t5 + t4 + t3 + 1 111111001 505

3.3 Affine Transformation

Definition 3.3. An affine function is defined in Boolean function over GF(2) as f(x) = u · x⊕ c =
u1x1 ⊕ u2x2 ⊕ · · ·unxn ⊕ cwhere x = (x1, x2, · · ·, xn) ∈ Fn

2 ; u = (u1, u2, · · ·, un) ∈ Fn
2 ; and c ∈ Fn

2 .

The multiplicative inverse of the affine transformation for input x ∈ GF(28) such that f(x) =
(x)−1 [13] is given by Equation (6):

(x)−1 =

{
(x)254, x 6= 0

0, x = 0.
(6)
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We consider the affine transformation as a Boolean function in GF(2n) such that y = αx−1 +β,
where α is an invertible n × n matrix; and β is the addition of a constant vector within the same
space. The inverse of y in GF(2n) is represented as x = γy−1 + λ, where γ is an invertible n × n
inversematrix; λ is the addition of an 8-bit constant vector; whilex−1 and y−1 are themultiplicative
inverse of the input and output bytes of an S-box respectively. Therefore, for our 8×8 S-box, we use
affine mapping in GF(28) as shown in Equation (7) below. To compute the affine transformation
for our S-box, we represent the invertible permutation matrix α as the matrix K as described in
Section 3.1; vector x is chosen such that x ∈ {0, 1}8; while the translation vector β is given a decimal
value 71. It is important to note that β and λ play a crucial role as translation vectors (cf. Equation
(7) and (8)) since they can help to avoid fixed points, S(x) = x.

y = αx−1 + β =



1 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0
1 0 1 0 0 0 0 1
0 0 0 1 1 0 1 0
1 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0





x0
x1
x2
x3
x4
x5
x6
x7



−1

⊕



0
1
0
0
0
1
1
1


=



y0
y1
y2
y3
y4
y5
y6
y7


(7)

x = γy−1 + λ =



0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0





y0
y1
y2
y3
y4
y5
y6
y7



−1

⊕



1
0
1
1
1
1
0
0


=



w0

w1

w2

w3

w4

w5

w6

w7


(8)

4 Application of the Design Construction for a New S-box

In this section, we show the application of the design construction for a new S-boxwith an ideal
SAC. First, we determine the dimension of the S-box that is constructed. We choose to construct
an 8 × 8 S-box as it is suitable for both general purpose and lightweight block ciphers. Next, we
identify a suitable algebraic construction, namely, the affine transformation of Boolean function,
y = αx−1 + β, where α represents an affine matrix based on cellular automata rule of 90. Based
on the identified algebraic construction, we compute affinematrix α using the method introduced
by [1]. We initialize the S-box with the byte values in ascending order row by row in the similar
fashion as used in the AES S-box by [14] starting with 00 until FF . Then, we identify the 30
candidates of an irreducible polynomial over GF(28) to determine the multiplicative inverse, x−1,
of the input. To do this, we construct 30 different candidates of S-boxes, each based on different
irreducible polynomials as listed in Table 2. Through an experiment, we evaluate each of the S-
boxes with standard evaluation criteria, namely, nonlinearity, strict avalanche criterion (SAC), bit
independence criterion (BIC), linear approximation probability, and differential probability. From
the experiment, we are able to find an irreducible polynomial that can generate an S-boxwith ideal
SAC (i.e. 0.5), as shown in Equation (9) below:

m(t) = t8 + t7 + t4 + t3 + t2 + t+ 1. (9)
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Table 3 summarizes the application of affine transformation on each byte of the S-bot using Equa-
tion (9) as the irreducible polynomial. As a result, we are able to obtain the S-box and its inverse
as shown in Table 4 and Table 5 respectively.

Table 3: Application of affine transformation on each byte of the S-box using t8 + t7 + t4 + t3 + t2 + t+ 1 as the irreducible polynomial.

x x−1 y = αx−1 + β Decimal Binary Hex
0 0 α(0)⊕ 71 71 01000111 47
1 1 α(1)⊕ 71 18 00101000 12
2 207 α(207)⊕ 71 34 00000100 22
3 138 α(138)⊕ 71 105 01111001 69
· · · · · ·
· · · · · ·
· · · · · ·
253 79 α(79)⊕ 71 38 00100110 26
254 108 α(108)⊕ 71 64 01000000 40
255 76 α(76)⊕ 71 81 01010001 51

Table 4: Proposed S-box.

47 12 22 69 5A 85 0C 58 F3 A2 CE D6 11 32 F6 B2
7C D2 13 6B 98 56 A4 A1 A5 C5 72 7F F4 DB 3B 66
AC CD AE 31 A0 2E 09 20 7A DE ED 87 1C 6F 94 F2
9E 84 0B 2F B7 36 2B 19 F1 8E 38 9B E4 37 95 A8
08 81 1F 49 0D 71 F5 17 16 4E 44 0E 99 15 5F BB
A3 2C B0 F0 4F F7 CB A9 39 D5 03 F9 64 74 FE 55
75 60 4C CA 9C 50 C6 1E B3 BF 78 DA CC 04 B1 B5
79 E7 5D 18 63 E8 FD C2 D9 00 FA 96 E6 01 02 EB
1B 45 C4 07 BE C8 5C 35 93 3F 30 77 73 EE AA E9
28 FF D1 FC C0 97 14 25 F8 82 AF 89 7B 42 AD B4
91 34 41 8A 3E CF FB 21 53 D0 76 8F 10 43 80 EF
E1 D7 23 2D 88 E3 6D 83 90 E5 B8 29 E0 62 6A 4B
3A 4A 9A 46 D4 4D 92 27 70 DF E2 BD 8C AB 3C 65
B9 DD A7 68 A6 1A BA 6C 9D 57 05 48 BC 7D B6 EC
24 59 5E 8B 7E 9F 33 D3 1D C9 C7 2A 67 5B 86 6E
3D C1 0F 06 EA 54 61 52 DC C3 8D D8 0A 26 40 51

5 Property Analysis of the New S-Box

This section presents the results of cryptographic properties for our newly designed S-box. We
apply the following important tests that are widely used as shown in [2, 3, 20], namely, the strict
avalanche criterion (SAC), bit independence criterion (BIC), nonlinearity (NL), linear approxima-
tion probability (LP), and differential approximation probability (DP). The numerical results for
the properties for our S-box is comparable to the AES S-box and some other existing S-boxes but
with a significant improvement in the value of SAC. The results of the comparative performance
between our S-box and other recently published S-boxes are presented in Section 7.
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Table 5: Inverse Proposed S-box.

BC 18 E7 E6 E4 A1 BD C9 9D 23 A0 32 E5 7D 57 B9
B6 28 C8 CB F9 F6 14 DE C4 55 89 4B 7A F0 A5 09
1C 5D 31 80 0E F5 77 CA 81 3A 38 8C 27 D1 EB 4D
CE 71 5A 25 73 67 3F ED B0 54 58 4 E0 B7 3B 06
A7 BB DA 83 6D 74 AA D2 02 64 41 90 29 FF 2E 61
F3 D8 94 60 B4 87 6A D6 88 CF 52 B8 24 BE 5F 0B
6E 3E 49 BA E3 C1 A8 0A 69 7B AC 20 8D B5 44 5E
7C 1D 03 3D C3 F2 A2 B2 DD AF 45 C6 CD 7F 82 0F
C0 91 85 48 AB 97 D3 9A 0C BF 50 43 59 C5 2B 22
C2 8F D5 72 9F 16 2F 00 68 46 E1 B3 51 76 CC 8E
21 4A 8B 4E 6F 70 95 1A 3C 5 93 84 35 A6 6B 15
2A E2 37 08 63 07 FC 96 F1 30 9C 12 FA 13 1B AE
75 7E D4 6C 1F 99 DC 2D A4 EA D7 56 79 FB 42 F4
4C C7 E9 36 39 10 B1 2C 33 26 65 53 86 66 A3 E8
D0 19 FE 9E 9B 1E AD F8 F7 47 78 EF D9 34 5C 01
92 4F 40 98 DF DB EE EC 17 62 A9 0D 8A FD 5B 11

5.1 Balanced Boolean Function

Definition 5.1. A Boolean function is called as a balanced function when the value of its output
either 0 or 1 occurs equally likely for any possible inputs.

More precisely, the Boolean function f(x) is balanced iff it meets the following Equation, (10)

Hw (f (x)) =

2n−1∑
x=0

f (x) = 2n−1, (10)

where Hw is the Hamming weight of the truth table; and n is the number of Boolean variables
representing the number of bits in the truth table of f (x). For instance, ifn = 8, then theHamming
weight for the balanced Boolean function is Hw (f (x)) = 128. Thus, to avoid biased output, our
S-box adopt the property of a balanced Boolean function.

The affine transformation f(x) = αx−1 + β over GF(2n) is a balanced Boolean function. Sup-
pose X = {x0, · · · , x2n−1} and y = {f(x0), · · · , f(x2n−1)} is the input and output of the truth
table respectively; and i ∈ {0, · · · , log2 2n−1} is the bit index. Then, y satisfies balanced Boolean
function since (

∑
x∈Xb

y
2i c) mod 2 = 2n−1.

5.2 Bijective

Definition 5.2. The S-box is said to be bijective iff every output of a Boolean has a unique value
within the range of [0, 2n − 1].

This property is required for every S-box to be invertible. Thus, for this reason, our S-box is
designed to meet the bijective property within the interval of [0 , 255].
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An affine Boolean function is bijective if the affinematrix (αij) ∈ Rm×n is invertible. Therefore,

a matrix α is invertible iff α × α−1 = In, where In =

( 1 0 ... 0
0 1 ... 0
...
...
. . .

...
0 0 ... 1

)
and det α, |α| = 0. Thus, by

showing α× α−1 = In and |α| = 0, enables us to confirm our proposed construction is bijective.

5.3 Strict Avalanche Criterion (SAC)

Definition 5.3. Ann-bit Boolean function y = f(x), withn ≥ 3 is said to satisfy the strict avalanche
criterion if flipping a single bit input results in exactly 50% of the output bits will be changed as
formalized in Equation 11.

f(x⊕ e)⊕ f(x) ,
2n−1∑
k=0

[f(xk ⊕ e)⊕ f(xk)] = 2n−1, (11)

where e ∈ Fn
2 with Hw(e) = 1.

The SAC requires that if a single bit at position i in the input value is changed, the prob-
ability of causing the change at j-th bit in the output value should be approximately 0.5, for
i, j ∈ {1, 2, 3, . . . , 8}. The dependency matrix in Table 6 shows the SAC values of the proposed
S-box. Note that, the average value of SAC from Table 6 for the S-box is equal to 0.5000. This
SAC value confirms the proposed S-box satisfies an ideal SAC property which gives the best result
compared to the other 29 S-boxes.

Table 6: Dependency matrix for strict avalanche criterion (SAC) values.

0.53125 0.45313 0.53125 0.54688 0.46875 0.48438 0.56250 0.45313
0.45313 0.54688 0.51563 0.53125 0.51563 0.46875 0.51563 0.53125
0.51563 0.45313 0.46875 0.51563 0.51563 0.51563 0.50000 0.51563
0.48438 0.48438 0.48438 0.45313 0.51563 0.51563 0.45313 0.56250
0.51563 0.53125 0.46875 0.53125 0.50000 0.51563 0.45313 0.53125
0.46875 0.45313 0.50000 0.51563 0.43750 0.50000 0.53125 0.51563
0.53125 0.51563 0.53125 0.46875 0.45313 0.43750 0.51563 0.50000
0.51563 0.48438 0.53125 0.48438 0.53125 0.45313 0.51563 0.50000

5.4 Bit Independence Criterion (BIC)

Definition 5.4. A Boolean function satisfies the bit-independence criterion (BIC) for input i and
output j, iff when the input bit i is inverted then the output bits j and j + k should change inde-
pendently, for k > 0 and j + k ≤ 8.

The S-box that generates the output bits independently from each other will have stronger
security. If an S-box fulfills the BIC property, all the constituent Boolean functions of the S-box
provide high nonlinearity andmeet the SACproperty verywell. Table 7 illustrates the nonlinearity
for BIC values for constituent Boolean functions of the proposed S-box. Table 7 shows that the
average nonlinearity value for BIC is 112. According to [4], if an S-box exhibits nonlinearity and
SAC, it fulfills BIC. The resulting nonlinearity scores of 112 for the proposed S-box demonstrate
a weak linear relationship among the output bits, thoroughly validating the BIC property of our
S-box.
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Table 7: Bit independence criterion (BIC) results for nonlinearity.

- 112 112 112 112 112 112 112
112 - 112 112 112 112 112 112
112 112 - 112 112 112 112 112
112 112 112 - 112 112 112 112
112 112 112 112 - 112 112 112
112 112 112 112 112 - 112 112
112 112 112 112 112 112 - 112
112 112 112 112 112 112 112 -

5.5 Nonlinearity (NL)

Definition 5.5. The nonlinearity of a Boolean function is the Hamming distance between the set
of all affine mappings and the Boolean function and is formalized as in Equation (12)

Nf = 2n−1(1− 2−n max |Wf (z)|), (12)

whereWf (z) denote the Walsh spectrum as shown in Equation (13); and x, z ∈ GF(2n).

Wf (z) =
∑

(−1)f(x)⊕x·z. (13)

Note that, the theoretical maximum value of nonlinearity of a Boolean function in GF(28) is
120 as described in [11]. However, the average nonlinearity value for our S-box is 112 which
is comparable to the AES S-box. Table 8 shows our S-box’s nonlinearity of all eight constituent
Boolean functions. The proposed S-box can reduce linearity and avoid linear cryptanalysis to be
applied successfully.

Table 8: Nonlinearities of constituent Boolean functions of proposed S-box.

Boolean function b1 b2 b3 b4 b5 b6 b7 b8
Nonlinearity 112 112 112 112 112 112 112 112

5.6 Linear Approximation Probability (LP)

Definition 5.6. Linear approximation probability is a measure to determine the maximum value of imbal-
ances or bias between input and output bits for an event as formulated in Equation (14).

LP = min
(Mx,My 6=0)

∣∣∣∣(#{x | x ·Mx = S(x) ·My}
2n

− 1

2

)∣∣∣∣ , (14)

where Mx and My represent the input and output masks respectively; x denotes the set of all
possible inputs; and n is the length of input (or output) for the S-box.

The result of this analysis is shown in Table 11. Since the result of our S-box outperforms other
existing S-boxes, this implies it is more secure to linear cryptanalysis as a result of having a low
value of linear approximation probability.

708



Mohd Esa, N. F. et al. Malaysian J. Math. Sci. 16(4): 697–715 (2022) 697 - 715

5.7 Differential Approximation Probability (DAP)

Definition 5.7. The differential approximation probability (DP) is a measure to determine the
propagation of differential characteristics resulting from two different inputs with a specific dif-
ferential value. The input differential ∆x must uniquely maps to an output differential ∆y to
ensure the S-box shows a differential uniformity. It can be formalized as in Equation (15).

DP (∆x→ ∆y) =

[
#{x ∈ X|S(x)⊕ S(x⊕∆x) = ∆y}

2n

]
, (15)

where X denotes the set of all possible input values; and n represents the length of the input (or output) of
the S-box.

To provide resistance against differential cryptanalysis requires low differential uniformity.
The numerical results of our S-box with regards to differential uniformity are highlighted (i.e.
S-box 18) in Table 11.

6 The result of NIST statistical randomness test

In this section, we provide the result of statistical randomness test using the tool provided by
the NIST [24] on our newly proposed S-box. These tests aim at identifying any non-randomness
that may present within [0,255] range of output sequence. In the statistical tests specified byNIST-
800-22, the findings were assessed using the predetermined p-value. If the specified p-value is
0.001, then the resulting p-values must be more than or equal to 0.001 in order to pass the test.
The files being tested should include sequences of zeroes and ones recorded in bytes. All entries
within the proposed S-box are converted into binary sequences to result in 2048-bit stream.

Table 9: NIST statistical tests and their results for the proposed S-box.

No NIST test name p-value Status
1 Frequency 1.00000 Passed
2 Block Frequency 0.82091 Passed
3 Cumulative Sums (Forward) 0.98416 Passed

Cumulative Sums (Backward) 0.98416 Passed
4 Runs 0.85968 Passed
5 Longest Run of Ones 1.00000 Passed
6 Binary Matrix Rank 0.48125 Passed
7 FFT 0.71511 Passed
8 Non-Overlapping 0.44529 Passed
9 Overlapping Template 0.10761 Passed
10 Universal Not applicable
11 Serial p-value 1 0.86986 Passed

Serial p-value 2 0.89241 Passed
12 Linear Complexity 0.05169 Passed
13 Approximate Entropy 0.00116 Passed
14 Random Excursions Not applicable
15 Random Excursions Variant Not applicable
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The result of the statistical randomness test on the proposed S-box using the tools from NIST-
800-22 are shown in Table 9. Out of 15 tests, only 12 can be applied successfully. However the
remaining 3 tests namely the universal statistical test, the random excursions test and the random
excursions variant test cannot be applied to the proposed S-box, since the length of the output
sequence of the S-box is only 2048 bits which is shorter than the minimum length required by
those tests.

7 Result and Discussion

There are four key findings of ourwork. First, we are able to find that the S-box, which employs
t8 + t7 + t4 + t3 + t2 + t+1 as the irreducible polynomial, can provide an ideal value of SAC (which
is 0.5) in our experiment. As a result, we have constructed the best S-box based on the SAC. In
addition, our S-box has a high value of nonlinearity similar to the AES S-box as shown in Table 10.
Having this high nonlinearity will result in resistance to linear cryptanalysis. Table 11 highlighted
the proposed S-box’s differential approximation probability and linear approximation probability
values, 0.0015625 and 0.0625, respectively. These small values of DP and LP give our S-box its
cryptographic strength as they offer a huge potential to resist against differential and linear crypt-
analysis, respectively. Our proposed S-box also fulfills the randomness properties when using the
tests provided by the NIST in [24].
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Table 10: Numerical result comparison of the strict avalanche criterion (SAC), bit independence criterion (BIC), nonlinearity (NL) for our
propose S-boxes with previous work of S-boxes design.

S-box Method Nonlinearity SAC Offset SAC BIC-NLMin Max Average
AES [14] 112 112 112 0.4999 0.0001 112
Khan and Azam [16] 112 112 112 0.503 0.003 112
Farwa et al. [15] 112 112 112 0.5016 0.0016 112
Alamsyah et al. [5] 112 112 112 0.501 0.001 112
Aboytes-Gonzalez et al. [1] 112 112 112 0.4998 0.0002 112
Zahid and Arshad [33] 104 108 106.8 0.507 0.007 103.9
Zahid et al. [34] 106 108 107 0.497 0.003 103.5
Malik et al. [17] 112 112 112 0.501 0.001 112
Anees and Chen [6] 112 112 112 0.4999 0.0001 112
Nitaj et al. [21] 112 112 112 0.501 0.001 112
Nizam Chew and Ismail [22] 112 112 112 0.4981 0.0019 112
Zahid et al [32] 104 110 107.5 0.4980 0.0020 103.5
Zahid et al [31] 110 112 111.5 0.506 0.006 104.2
Zahid et al [35] 110 112 111.5 0.502 0.002 103.7
S-box 1 112 112 112 0.5076 0.0076 112
S-box 2 112 112 112 0.4985 0.0015 112
S-box 3 112 112 112 0.5046 0.0046 112
S-box 4 112 112 112 0.4993 0.0007 112
S-box 5 112 112 112 0.5081 0.0081 112
S-box 6 112 112 112 0.5073 0.0073 112
S-box 7 112 112 112 0.5081 0.0081 112
S-box 8 112 112 112 0.4941 0.0059 112
S-box 9 112 112 112 0.5044 0.0044 112
S-box 10 112 112 112 0.5051 0.0051 112
S-box 11 112 112 112 0.5017 0.0017 112
S-box 12 112 112 112 0.5024 0.0024 112
S-box 13 112 112 112 0.4963 0.0037 112
S-box 14 112 112 112 0.5039 0.0039 112
S-box 15 112 112 112 0.5027 0.0027 112
S-box 16 112 112 112 0.5049 0.0049 112
S-box 17 112 112 112 0.4995 0.0005 112
S-box 18 112 112 112 0.5000 0 112
S-box 19 112 112 112 0.5029 0.0029 112
S-box 20 112 112 112 0.5061 0.0061 112
S-box 21 112 112 112 0.4988 0.0012 112
S-box 22 112 112 112 0.5032 0.0032 112
S-box 23 112 112 112 0.4468 0.0532 112
S-box 24 112 112 112 0.5078 0.0078 112
S-box 25 112 112 112 0.4983 0.0017 112
S-box 26 112 112 112 0.5007 0.0007 112
S-box 27 112 112 112 0.5061 0.0061 112
S-box 28 112 112 112 0.5005 0.0005 112
S-box 29 112 112 112 0.5024 0.0024 112
S-box 30 112 112 112 0.5002 0.0002 112
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Table 11: Numerical result comparison of linear approximation probability (LP), and differential approximation probability (DP) of pro-
posed S-boxes with previous work of S-boxes design.

S-box Method LP DP

AES [14] 0.0625 0.0015625
Khan and Azam [16] 0.0625 0.0015625
Farwa et al. [15] 0.0625 0.0015625
Alamsyah et al. [5] 0.0625 0.0015625
Aboytes-Gonzalez et al. [1] 0.0625 0.0015625
Zahid and Arshad [33] 0.14 0.054
Zahid et al. [34] 0.156 0.039
Malik et al. [17] 0.0625 0.0015625
Anees and Chen [6] 0.0625 0.0015625
Nitaj et al. [21] 0.0625 0.0015625
Nizam Chew and Ismail [22] 0.0625 0.0015625
Zahid et al. [32] 0.14063 0.039063
Zahid et al. [31] 0.125 0.039063
Zahid et al. [35] 0.125 0.039063
S-box 1 0.0625 0.0015625
S-box 2 0.0625 0.0015625
S-box 3 0.0625 0.0015625
S-box 4 0.0625 0.0015625
S-box 5 0.0625 0.0015625
S-box 6 0.0625 0.0015625
S-box 7 0.0625 0.0015625
S-box 8 0.0625 0.0015625
S-box 9 0.0625 0.0015625
S-box 10 0.0625 0.0015625
S-box 11 0.0625 0.0015625
S-box 12 0.0625 0.0015625
S-box 13 0.0625 0.0015625
S-box 14 0.0625 0.0015625
S-box 15 0.0625 0.0015625
S-box 16 0.0625 0.0015625
S-box 17 0.0625 0.0015625
S-box 18 0.0625 0.0015625
S-box 19 0.0625 0.0015625
S-box 20 0.0625 0.0015625
S-box 21 0.0625 0.0015625
S-box 22 0.0625 0.0015625
S-box 23 0.0625 0.0015625
S-box 24 0.0625 0.0015625
S-box 25 0.0625 0.0015625
S-box 26 0.0625 0.0015625
S-box 27 0.0625 0.0015625
S-box 28 0.0625 0.0015625
S-box 29 0.0625 0.0015625
S-box 30 0.0625 0.0015625
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Since our work to find the invertible matrices is based on an experiment, one should examine
the relationship between the rule of cellular automata and its initial vectors. To be more precise,
the new invertible matrices can be constructed mathematically rather than finding the invertible
matrices through an experiment. We leave this problem as the scope of future research.

8 Conclusion

An S-box is a popular nonlinear element in symmetric block ciphers. We have proposed a
uniquemethod to design an efficient strong S-box by incorporating an affine transformation based
on cellular automata matrix under a suitable modulo irreducible polynomial. Our proposed S-
box is tested for cryptographic strength using various properties such as strict avalanche criterion
(SAC), bit independence criterion (BIC), nonlinearity, linear approximation probability (LP), and
differential approximation probability (DP).We have obtained significant results using these tests
compared to the other related S-boxes available in the literature. Our method enables us to obtain
an ideal SAC value of 0.5 from the proposed S-box. The potential scores of BIC, nonlinearity, SAC,
and other criteria of our S-box represent its prospective candidature for future block ciphers.

As for future work, one should try to formulate the relationship between the rule of cellular
automata and its initial condition to find the invertible matrix mathematically instead of experi-
mentally. Finally, we alsowould like to see the result of using our proposed S-box in the AES block
cipher or any new block cipher designs, particularly regarding security.
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